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1. INTRODUCTION

Advanced design of aerodynamic and hydrodynamic vehicles often
depends critically upon an understanding of transition sensi-
tivity to many phenomena. Nosetips on ballistic reentry
vehicles, for exampie, must be designed to withstand transi-
tion destabilizing effects of surface roughness, ablation,
surface cooling (in the presence of roughness), and entropy
gradient. As a second example, current advanced hydrodynamic
vehicle design procedures make advantageous use of the strong
stabilizing effects of favorable pressure gradient and sur-
face heating to generate laminar-flow vehicles. Linear sta-
bility theory is the most popular theoretical tool for guiding
design of many vehicles for which transition location influ-
ences the design configuration. While linear stability theory
has proven irrelevant for reentry vehicle nosetips (because of
the occurrence of roughness-induced transition bypass), a
great deal of success with stablility theory has been enjoyed

for hydrodynamic vehicles, most notably by Wazzan and Smith.l

For transition triggered by small amplitude disturbances,
linear stability theory provides a nearly exact solution to
the Navier-Stokes equations. There is 1little doubt that sta-
bility theory's Tollmien-Schlichting waves exist and play an
important role in the initial stages of transition. Because
the end state of the transition process is a (highly nonlinear)
turbulent flow, linear stability theory breaks down at some
point between that of the initiation of Tollmien-Schlichting
waves and the transition point (defined, for example, as the
point where skin friction achieves a minimum). In other
words, linear stability theory is inapplicable in the post-
critical stages of transition and therefore has no natural way

of specifying the actual transition point.




Undaunted by this limitation on stability theory's applicabil-
ity, Smith2 and van Ingen3 simultaneously (with no knowledge
of the other's activities) devised the well-known e? method.
As is so often the case with clever approximations, the e?
method has yielded accurate predictions for flows well beyond
the original data base. However, the record of success has
been blemished somewhat by inaccurate predictions including,
surprisingly, applications such as transition sensitivity to
freestream turbulence with varylng spectral content.

Presumably, either a nonlinear stability theory or an exact
Navier-Stokes solution method is needed to rigorously bridge
the gap between the initiation of Tollmien-Schlichting waves
and the transition point. Because neither of these two
approaches has been developed to the point of being practic-
able for engineering design, the designer must depend upon
existing correlations and/or approximate methods such as the
e® method.

Recently, a new approximate transition-prediction method has
been devised which shows great promise for engineering design,
viz, the turbulence-model transition-prediction method.u'6

The method is based on the conventional long-time averaged
equations of motion. Nonlinear correlation terms such as the
Reynolds stress are approximated in a manner similar to that
used in standard closure schemes for turbulent flow modeling.
As will be explained in greater detall in Section 2, turbu-
lence-model equations on the one hand are expected to apply

in the latter stages of transition. On the other nhand, the
time-averaging process removes explicit appearance of Tollmien-
Schlichting waves. Consequently, the turbulence-model transi-
tion-prediction method is reasonly well founded only near the
end of transition.




As with the linear-stability/e?® method, turbulence-model
equations have provided accurate transition predictions well
beyond the original data base. 1In fact, the equations formu-

lated by Wilcox and Chambers ' 2

have ylielded accurate results
for virtually all of the applications made to date. However,
some of thils success has been achieved with an adjustable
parameter, viz, the freestream turbulence level. Additionally,

the method has no natural way of representing spectral effects.

In summary, because correlations generally are limited to a
restricted data base, linear-stability/e? and turbulence-model
methods are the only two comprehensive transition theories
which are of practical utility for the aerodynamic/hydrodynamic
vehicle designer. The former 1s theoretically sound only dur-
ing the initial stages of transition while the latter 1is well
founded only near the end of transition. Hence we reasonably
may speculate that a syntheslis of these two methods will yield
a transition-prediction theory which is fundamentally more
sound than either theory standing alone.

The primary objective of this project has been to synthesize
linear-stability theory and the turbulence-model transition-
prediction method. In so doing, the most immediate result

of the proposed research, if successful, would be development
of a physically sound alternative to the empirical Smith-van
Ingen e? procedure. Aside from the advantage of having a more
fundamental method for simulating the post-critical stages

of transition, the proposed synthesis would obviate the costly
eigen-solutions needed to compute amplification ratios beyond
the critical Reynolds number. Rather, a straightforward
boundary-layer marching computation would be all that 1is need-
ed in solving the turbulence/transition model equations from
the critical Reynolds number up to the transition Reynolds

number.




As will be shown in the following sections, an important

first step has been taken toward accomplishing the proposed
synthesis. Results for the Blasius boundary layer show that
the most important (in the context of transitional boundary
layers) closure coefficient appearing in the turbulence-model
equations approaches a universal 1limiting value for amplifica-
tion ratios in excess of about e".
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2. ANALYSIS

This section first reviews the turbulence-model equations

1 which form the basis of the study. Then, the key closure
coefficient controlling transition-prediction accuracy, A,
is cast in terms of linear-stability variables. Finally,
the coefficient A is computed for the Blasius boundary layer
over the entire stability spectrum and is found to approach
a universal limiting form for amplification ratios in excess

of e,
2.1 REVIEW OF THE TURBULENCE-MODEL EQUATIONS

2.1.1 The Model Equations

For arbitrary incompressible flows, the model equations

arelo’ll

Mass Conservation

au
L =0 (1)
d
Momentum Conservation
aui B 3 ari
PUs 3%, = " 3x, T 5% (2)
J i J
Energy Conservation
MDA
T 1 3x, = 5% (3)
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Turbulent Mixing Energy

ouJ %%— = [a“ 2SU - B*w] pe
J ()

[ (u + o¥*pe)

lc)

+

%]

|
> |0
d

X

J

Turbulent Dissipatlon Rate

puy; 39« fo /o5T - o+ 2o(g§_k)2]w} g’

J
g ik (5)
()
gl e &

where xJ is position vector. Time-averaged (mean) velocity
is denoted by uJ while h, p, p and u are mean enthalpy,
pressure, density and molecular viscosity; TiJ and qy

are the shear stress tensor and heat-flux vector. The

T Lf2 (aui/axJ + auj/axi) 1s the mean strain-
rate tensor. The turbulent mixling energy, e, and the turbu-

quantity S

lent dissipation rate, w, are needed to define the eddy
diffusivity, €, which 1s given by the following equation:

€ = e/w (6)

In order to close this system of equations, the stress ten-
sor and heat flux vectors must be speciflied. In the Wilcox-
Tracl turbulence model the stress tensor 1is assumed to have
its principal axes alllgned with those of the mean strain-

rate tensor so that we write

Tid = 2(u + pe) SiJ - gﬂe GiJ (7)
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Also, appealing to the classical analogy between heat and
momentum transfer, we write the heat flux vector as

U pe \ 9h
q, = [+ 2=} 20 (8)
i (PrL PI‘T) 3xi

whre PrL and PrT are laminar and turbulent Prandtl numbers.
The quantity % 1is the turbulent length scale defined as 1

L = e%/m (9)

The turbulent Prandtl number, PrT, and the closure coefficients

a,a* B,B% 0,0% appearing in Equations (4) and (5) are

B*:

¥

o
nqka ok»

9
100
L
2

28
PrT =3 (10)
a =-}—[1 - (1-)) exp (-Re,/2) ]
3 it
R L -
a 10[1 (1-2) exp ( 2ReT)]
where ReT is the turbulent Reynolds number defined by
Re, = %2/ (11)
T pe u
As will be discussed in the next subsection, transition pre-
dictions are most sensitive to the closure coefficient A

appearing in the last two of Equations (10). Detailed study
of the viscous sublayer of a turbulent boundary layer7’10 indi-

cates that accurate sublayer properties can be simulated
with (see Figure 1)

- A 5
A= (12)
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Comparison of computed and measured sub-
layer properties for a perfectly smooth
wall,
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Using Equations (1) through (12) (in some cases, similar
versions of these equations), a wide range of compressible

and incompresslible turbulent flows have been computed,

including complicating effects such as boundary-layer separa-
tion,l3’lu streamline cur'vature,15 surface roughnesslO and
10 with no additional modifications, the model

accurately simulates many aspects of Incompressible flat-plate
1 0L AL

mass Injection.

boundary layer (FPBL) transition. Hence, at least for

the relatively simple FPBL, this model for fully developed

turbulent flows provides an accurate description of mean flow

properties during transition. And this, despite the fact that

the long~time averaging process leading to Equations (1)
through (5) masks the presence of any wave-like instability!

Before proceeding to further discussion of why the model does
as well as it does and of the value of X for more complicated
flows, it is instructive to present the physical definitions
of the turbulence parameters e and w and appropriate surface

boundary conditions for each.

As argued by Wilcox and Chambcrs,7’15 the turbulent mixing
energy 1s proportional to the kinetic energy attending the
fluctuation of fluid particles normal to the plane of shear.
Letting v' denote the fluctuating velocity component normal
to the shear plane (under the boundary-layer approximations,
shear planes are parallel to the x-z plane), the turbulent

mixing energy 1is given by
Q
e=n—<v"> (13)

The physical meaning of w has also been discussed by Wllcox and
Tsd3

Chambers. For incompressible boundary layers, comparison
of the limiting forms of the model equations and the exact

Reynolds stress equation very close to a solld boundary

e bt i




shows that w 1s the rate at which e 1s dissipated into heat,
mean kinetic energy and other fluctuation modes; a suit-
able definition of w 1is

- 3v <(dv'/3y)3*>
2 E'- <V'2> (lu)

Using the definitions given in Equations (13) and (14),
boundary conditions appropriate for smooth and rough surfaces
have been devised by Wilcox and Chambers7 and by Wilcox and
Traci.lo Letting k denote (peak-to-valley) roughness height,

detailed study of the viscous sublayer shows that (in the

limit of small roughnesses):

e =0 at y =0 {15)
v
%? ;% , smooth surfaces
w -+ 3 as y~* 0 (16)
4320 E¥ , rough surfaces

Dol e Fundamental Considerations

The only feature of transitional boundary layers which has
been explicitly introduced into the model is the following.
Concurrent with our analysis of the viscous sublayer, the
value of X has been established by demanding that the linear-
stability minimum-critical Reynolds number, Rexc, for the
Blasius boundary layer match the corresponding model-equation
neutral-stability Reynolds number, Rei. The latter 1is defined
as the Reynolds number based on the plate length beyond which
turbulent energy production, a*|du/dy|pe, exceeds turbulent
energy dissipation, B¥pwe. Using the Blasius profile and
noting that w# 20v/By? [see Equation (16)], the neutral
stability Reynolds number is




Reg 2 Z%Q (17)

Demanding that Re, = Rei yields the value of X given in
Equation (12).

The model equations reasonably can be expected to apply to
transitional flows which are lnsensitive to spectral effects.
That is, the various constants in the model equations are
essentially correlation coefficients which have been inte-
grated over the turbulent spectrum. Hence, if the stability
diagram shows that a wide range of wave numbers, &, undergo
amplification, the spectrum will more closely resemble a
fully-turbulent spectrum than if only a small range of wave
numbers are unstable. For example, the stability diagram for
a boundary layer subjected to a pressure gradient is shown in
Figure 2. For adverse pressure gradient, a finite range of
wave numbers are unstable at all Reynolds numbers in excess
of Rexc (note that &% is displacement thickness). On the
basis of the discussion above, the model would be expected

to accurately predict the destabilizing effect of adverse
pressure gradient. In contrast, the stability diagram becomes
thinner with increasing favorable pressure gradient so that
spectral effects become increasingly important, particularly
for small freestream turbulence intensity, T', which yields
transition at large values of Rea*; the model hence would be
expected to fare poorly for transitional boundary layers

with favorable gradients (and small freestream disturbances).
The model behaves Jjust as the above discussion indicates.
kxcellent agreement between theory and experiment is obtained
for adverse gradlents while, for low freestream turbulence

intensities, the model falls to predlict the strong stabilizing

effect of favorable gradients.

LA
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To remove this deficiency, Wilcoxid pas extended the re~

Quirement

Re~ = Re (18)
X xc

to include favorable pressure gradients, suction and surface
heating effects. For small freestream turbulence intensity,
Equation (12) is replaced by

u 5/2
P W %
A = 11<u ) £(n) (19)
e
where A is given by
Y 2 2
0 d°u
A= -= ——(-—T> (20)
Pw Ue \3¥ -

and the quantity 6 1s momentum thickness. The function f(A)
has been determined by invoking Equation (18). Figure 3

presents results based on linear-stability predictions for '
the Pohlhausen profiles and for the asymptotic suction pro- f
f‘ile;lb a good fit to the data indicates the variation of

the function f(A) with A is hence

L+ 8T oxp -0 H(A)] (21)

F(A) * g5 * 38

where H(A) is the Heaviside stepfunction.

In essence, Equations (19)-(21) represent a correlation of
linear-stability-predicted minimum-critical Reynolds numbers.
We have thus implicitly built in some of the wave-instability
phenomena which were lost through the long-time averaging
procedure. Two key points must be amplified regarding this
last point. First, the coefficient A is not invariant for
transitional flows; rather, it 1is sensitive to the spectrum
of unstable frequencies. Thus, it 1s through the precise

13
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value of A that Tollmien-Schlichting waves implicitly appear

in the model. Because the only transition-specific modifica-
tions to the model equations are for the coefficient A
[Equations (19)-(21)], it 1s hence unsurprising that ultimately
we have chosen to rely upon linear-stability theory to set its

value. Second, and of central importance to the present

program, the coefficient A also controls the rate at which dis-
turbances are amplified beyond the critical point. The model's
ability to accurately predict actual transition point location
indicates that once the critical point is correctly established,
the model provides an accurate simulation of the post-critical

stages of transition with no further appeal to stability theory.

Given this insight, the whole concept of using turbulence-model
equations to describe transition can be cast in a different
light. On the one hand, time-averaging conceals many impor-
tant physical aspects of transition mechanisms, particularly
during the early linear-amplification phase. We are thus obli-
gated to put some of the physics back into the equations which
was lost through the time-averaging process; ergo, the modifi-
cation to A. On the other hand, assuming the latter phases of
transition (i.e., close to the transition point) to be very
rapid, the time-averaging process becomes a more plausible
concept as the flow more nearly resembles a turbulent flow.
(interestingly, the modification to A has little effect on the
latter stages of transition.) The turbulence~model transition-
prediction approach thus has 1ts strongest foundation in the
latter stages of transition, precisely the regime where con-

vnetional linear-stability methods are not well fonnded.

Thus, turbulence-model equations might most properly be viewed
as a plausible alternative to the e? method. That is, a linear
stablility computation could be performed up to, and perhaps

a bit beyond, the minimum-critical Reynolds number. Results

i

P — — - —— —
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of the stabllity computation would define A. Then, rather

than continuing to solve eigenvalue problems to determine
amplification factors up to the e® amplification point, the
model equations could be used to predict transition location.
As noted above, what we are currently doing 1s using a cor-
relation of linear-stability minimum-critical Reynolds numbers
to fix the value of ).

Note that there is a fundamental premise underlying the notion
that a computation with the model equations can replace the

conventional e? procedure. The premise is that )\ must be

constant (or at least nearly constant) for varying Reynolds

number and also be either constant or assume a universal

variation through the boundary layer. If XA 1is either constant

or assumes a universal variation through the layer, there is a
rational procedure for setting its value in terms of the com-
puted eigenfunctions. Likewise, if A 1s nearly constant with
Reynolds number, there may be a rational procedure for choos-
ing an appropriate "average" value such as, for example, the
value at the point where the linear-stability solution has
been amplified to e“ times its initial value. In other words,
if linear-stability theory indicates that X either (a) does
not vary substantially with Reynolds number and with distance
through the boundary layer or (b) varies in a universal manner,
the closure approximation involving X will be proven for very
low Reynolds number.

2.2 THEORETICAL FORMULATION

As noted above, the overall objective of this research has

heen to synthesize linear-stability theory with the turbulence-
model transition-prediction method. In the proposed synthesis,
stability theory is used to locate the critical Reynolds number,
RC. Then, based on the stability solution at Rc (or perhaps

at a slightly larger Reynolds number), initial conditions are
established for a turbulence-model computation which proceeds
from the point at which the stabllity solution 1is valid, up to

16
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the transition point. To obtain a well-posed initial value
problem for the turbulence-model computation, initial con-~
ditions are needed for three quantities, viz, e, w and \.
In this subsection, these three quantities are specified

in terms of linear-stability eigenfunctions.

Confining analysis to incompressible flows, Equations (13)
and (14) provide an obvious way of defining e and w profiles
in terms of the stability theory eigenfunctions. To deter-

mine the initial value of A we must examine the equation for
e. For incompressible boundary layers, the equation for e
simplifies to

de 98 - 4|3l _ g §_.[ * éﬁ] 5
s b W W Iayle Brue + 3y (v + 0 E)ay (22)

where u and w are the mean velocity components in the stream-
wise, x, and lateral, z, directions. Note that in writing
Equation (22) conventional boundary-layer approximations have
been made and, in addition, the flow has been assumed paral-
lel so that v = 0. The closure coefficient o¥* assumes a value
of 1/2 while, in the 1limit of small Reynolds number based on
turbulence intensity and scale [see Equation (10)], a¥ simpli-
fles to . 3

a=1—(—5>\
We now proceed to derive a relation between the closure coef-
ficient X and the stability solution. Noting the definition of
e, we can derive an exact equation for its evolution by taking
the v' moment of the v-momentum equation. The following equa-

tion, subject to the same approximations used in writing
Equation (22), results for e.

e o Jte Dovtapt. 8 yBvWE_ L8 T oBe . 9. vs,] (23) |
R YT T op by 2"<ay)’+ay["ay‘ﬂ” d
Comparison of Equations (22) and (23) shows that we have made %

he following two closure approximations:

17
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o)
o¥e %% = - ﬁ <v'3> (24)
while
5 9 v'd 9 _rav'y°
3 u | _ Lo onrant. 3 av'
[TE Moy | B*w]e ey T2 v<(3y £ (25

With some manipulation, the closure coefficients A and o¥

can be expressed as follows.

3 ' 2
g% = - 32‘ v<vto> <(3v'/3y)T> (26)

ey 3
<y 'S a<v' > /3y

st 8’2' vty °

2<— - S

_10 _ o Y “<(8y i
3

A =
<v'?>|3u/8y| (27)

Equation (27) 1s the desired relation which can be used along
with Equations (13) and (14) to define initial conditions for a
turbulence-model computation. Potentially, Equation (26) pro=-
vides a further check on the validity of the closure approxima-
tions. However, as will be shown below, Equation (26) pre-
dlcts o* = 0 as a consequence of the assumed linearity of the
solution.

In the linear-stability solution, the veloclty and pressure
fluctuations v' and p' are written as

V(XY s258) = Uw¢(y)exp[1(&x + Bz - wt)] (28)
p'(x,¥,2,t) = pUn(y)exp[1(dx + Bz - &t)] (29)
18
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where t denotes time, U_ 1s freestream velocity, & and 8
are wave numbers, @& is frequency, and the functions ¢(y)
and m(y) are the complex amplitude functions of the disturb-

ance flow variables v' and p'.

To evaluate the time-averaged quantities appearing in Equations
(13), (14), (26) and (27) we use the following definition:

B+l
15l 0
cp= = (,I)TTOO ﬁ/w(X,y,Z,t')dt' (30)
t-T

An immediate consequence of the assumed linearity of the
solution is that correlations of odd order vanish, e.g.,

<y'> = <v'3> = <V'5> = RO — ) {(31.)

Thus, as noted above, Equation (26) implies that o¥* = 0.
Although o* is postulated to be 1/2 by Wilcox and Traci, this
discrepancy is of little consequence as the diffusion terms
in the e equation play an insignificant role in transitional
flows.

Working with the real parts of the linear-stability solution
functions, performing all time-averages indicated in Equations
(13), (14) and (27), and denoting local Reynolds number by R
yields the following:

e/ul = (45 + 6D (32)

" 5
e 3 (de,./dy)” + (d¢,/dy)

2 R¥RY

(33)
(65 + o)




) =1 2 2
R ‘(¢r'd"r'/d'v + ¢1dnl/dy) - R [(dcbr/dy) + (d¢1/dy) ] 4

: s W)
(o), + 1) [3U/dy]

where y 1s now dimenslonless distance from the surface, U = G/U“‘,
and subscripts r and 1 denote real an' imaglnary part. Equations
(32) = (34) are the desired relations which can be used to define
initial conditions for a turbulence-model computation in terms

of a given linear-stabillity solution.

d.3 EVALUATION OF THE CLOSURE COEFFICIENT A

Having derived Equations (32)-(34) above, the next step ls to per-
form a linear-stability computatlion and to examine the resultant
profiles, particularly the X proflle. The most sensible starting
point is to beglin with the Blasius boundary layer. A large number
of stabillity computations have been performed with the M(iCkl7
stabllity program; all computations have been done with the spatial
amplification theory optlon. Both Reynolds number and frequency
have been varled 1in order to determine the varlation of A through-

out the Reynolds-number/frequency plane.

Prior to examining results of the computations, 1t 1s instructive
to recall that the baslic premise of forming a synthesis of linear
stabllity and turbulence-model methods is that two condlitions be
satisfied. The first conditlon is that the closure coefficilent

A\ be either relatlively weak function of distance through the
boundary layer or, at least, assume a similar varlation for all
unstable frequencles; this condltion valldates the closure ap-
proximation defined in Equation (25). The second condition 1is
that X vary slowly with Reynolds number; thils condltion 1s need-
ed (a) to validate Equation (25) and (b) to eliminate solution
sensitivity to initilal conditlons. Note also that we hope to
find the average value of X to be reasonably close to the postulat-

ed Blasius value, viz, A = 1/11.
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Figure 4 shows computed A profiles at nine Reynolds numbers cor-

responding, to one stable case, one neutrally stable case, and

seven unstable cases corresponding to amplification from the
n .

neutral case by factors of e with values of n ranging from 0

to 10; for all nine cases the frequency 1is given by

Fr = Ov/U2 = 2.107° (35)

We are thus following the evolution of X for a constant-frequency

disturbance initiated at a Reynolds number upstream of the neutral

point corresponding to the frequency given in Equation (35).

As shown, although A varies rapidly with y near the surface, all

nine curves display approximately the same variation. However,
above a vlaue of n = y/Um/vx of about 2, the various A profiles

vary rapidly with n and do so in dissimilar manner for amplifica-

tion ratles up Uo eu'bb. For example, at the lowest Reynolds

number (for which the solution 1s stable), A 1s negative above
n = 2. As we move to the neutral point we find that X vanishes
for values of n in excess of 2.5. Then as Reynolds number in-
creases, A varies more and more rapidly with n and asymptotes

to a singlo curve for amplification ratios in excess of between

3
e” and e

Figure 5§ shows similar curves for a dimensionless frequency Fr

given by

=5 L
Fr = 3-10 (36)

Again, the curves collapse to a single curve for amplification
l

ratios in excess of e .
Computations have been performed for frequencies covering the
entire stabillity diagram. For each frequency considered, the
computed X profiles always asymptote to a universal profile

4 . 5
beyond the e point with a subtle qualification. That is, re-

ferring to Figure 6, as Reynolds number increases, the upper

branch of the stability diagram eventually is reached and we
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again enter a stable region. As we approach this upper neutral

point, the X profiles begin to fall back to those typical of

low Reynolds numbers.

The rapid variation of A near n=0 results from a breakdown in
the basic closure approximations near the surface. That is,

the production term in the <v'?> equation, <—§L %$L>, goes to
zero quadratically with distance from the surface'so that, in

terms of n,

y_' 3p' 2
<_p 3y > S as n-+0 (37)

By contrast, the modeled production term for R0T+O behaves as

%5 3 %%-e - % nt as n+0 (38)

Consequently, close to the surface we ultimately have
% as n-+0 (39)

This modeling shortcoming is of little consequence as dissipation
exceeds production near n=0. Consequently, for the remainder of
this discussion our focus will be upon the region between n=1

and the outer edge of the boundary layery n=5.

Figure 7 shows computed A profiles for several frequencies and
amplification ratios. s shown, all of the computed A profiles

cluster about the approximate profile defined by
A = .0093 + .0015exp [-(n-1)] (40)

Hence, one of the baslic requirements for establishing a turbulence-
model/linear-stability synthesis appears to be satisfied, viz,
the A pr "ile appears to approach a universal (i.e., independent

of frequency) limiting profile as amplification ratio increases.
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To determine the rate of approach to the asymptotic profile,
it is convenient to examine the average value of XA defined as

follows.

5
- _ 1
i3 I A dn (41)

Figure 8 shows X as a function of displacement thickness
Reynolds number, Reé*; note that Reé* denotes the neutral-
stability value of Reg* for a given ?requoncy. As shown, for
the higher frequencies A approaches its asymptotic value most
rapidly. Keor Er = 0.5'10_5, the lowest frequency at which
computations have been done, the approach to the asymptotic
value is the least rapid. A key feature of all the curves is
that their asymptotic values lie between A = .066 and X = .083,

as compared to the postulated turbulence-model value of .091.

Further examination of the X variation with Reynolds number shows
that for the higher frequencies, the peak value is achieved at

an amplification ratio of about eu while, for the lowest fre-
quency, A is about half its asymptotic value at this ratio.
Figure 9 presents the variation of X with frequency for amplifi-
cation ratio eu, including a correlation of the computed values;
the correlation is:

X = %g {1 - exp [—%i(lOuFr)]} (42)

n=14
The asymptotic values of X are also shown for reference. Two
key conclusions can be drawn from the observed variation of X.
First, beyond an amplification ratio of eu. 1 varies slowly with
Reynolds number. Second, X is only weakly frequency dependent
for frequencies in excess of Fr = 1.0:107°. These two points
lend further credence to the second of the two basic hypotheses
underlying a synthesis of turbulence-model and linear-stability

theorles.
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3. DISCUSSION

Results presented in Section 2.3 show that for the Blasius
boundary layer the closure coefficient A approaches a universal
limiting form for amplification ratio in excess of about eu
while, for smaller amplification ratios, A appears to be strong-
ly frequency dependent. This observation 1s consistent with the
notion that a uniformly valid theory can be developed by using
linear stability theory up to the ell amplification point and by
then using the turbulence-model equations from this point up to
transition. On the one hand, using stability theory up to am-
plification ratios of eu is quite reasonable as nonlinear terms
almost certainly are negligible in this regime. On the other
hand, the weak dependence of A on frequency for amplification
ratio greater than eu and the universal limiting form are con-
sistent with the overall notion of using long-term averaging.
Thus, for the Blasius boundary layer, we have a suitable de-
finition for the post-critical stages of transition, viz, the
stages beyond the point at which a boundary-layer disturbance
has been amplified to eu times its initial value.

In summary, although results presented represent only a first
cut at accomplishing a synthesis of turbulence-model and linear-
stablility theories, encouraging progress has been made. Further

research in two specific areas is needed to complete the synthesis.

The first area needing further investigation 1s evaluation of A
for boundary layers with pressure gradient, suction and surface
heat transfer. In so doing, we can determine whether a profile
such as that defined in Equation (40) applies to all boundary
layers or if straightforward generalizations can be made to de-
vise a universally applicable A profile. The second area is use
of Equation (40) in a turbulence-model computation to determine
solution sensitivity to (a) the point of initiation (e.g., eu
amplification point) and (b) freestream turbulence.
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Results of this study suggest that when this research has been
done our ultimate goal of establishing a physically sound

alternative to the empirical Smith-van Ingen e9 procedure can
be realized.
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LIST OF SYMBOLS

DEFINITION
Turbulent mixing energy defined in Equation (13)

Empirical stability function

Static enthalpy

Heavislde stepfunctlon

Roughness helght

Amplification ratio exponent, e
Statlc pressure

Laminar, turbulent Prandtl numbers

Heat flux vector

Plate=length Reynolds number

Turbulent Reynolds number deflned in Equation (11)
Neutral-stabillity Reynolds number

Minimum-critical Reynolds number
Displacement-thickness Reynolds number

Mean straln rate tensor

Freestream turbulence intensity

Velocity components in x,y,2 directlons

Velocity vector

Friction veloclty

Freestream veloclty

Carteslan coordinates 1in streamwise, normal, lateral
directions

Position vector
Clesure coefficlents
Complex wave number
Closure coefficlents
Complex wave number
Displacement thlckness

Kinematlc Eddy viscoslity
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_ LIST OF SYMBOLS
i
|
SYMBOL DEFINITION '
: n Blasius similarity variable
0 Momentum thickness
A Closure coefficient
x Average value of A defined in Equation (41)

A Peak value of X
‘max ’

| Value of A when amplification ratlo is e

n=4

A Modified Pohlhausen parameter

v Molecular viscoslty

\V Kinematic molecular viscosity

m(y) Complex pressure eligenfunctilon

o l\‘l]:‘»‘t.\'

o ,0% Closure coefficients

1 1] Stress tensor

o(y) Complex normal-veloclty elgenfunction
W Turbulent dissipation rate defined in Equation (14)
;:\ Frequenc_

A m - ¢ l/‘) /

¢ lurbulent length scale, e /W

Subscripts and Superscripts

o Boundary layer edge value

Imaginary part

r Real part
W Surface or wall value

Ot her Notatlon

For a given variable y:

<> Y Long=time-averaged value of ¢ defined in Equation (30)
¢! Fluctuating part of v
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